Choose the correct answer in each of the following:

Section 1.3:

1. If $F(x) = 5^{\cos x^2}$, $h(x) = x^2$, $g(x) = \cos x$, $f(x) = 5^x$, then

(a)
$$F = f \circ g \circ h$$

(b)
$$F = g \circ h \circ f$$

(c)
$$F = h \circ f \circ g$$

(d)
$$F = h \circ g \circ f$$

2. If f(x) = 7 and g(x) = x + 1 then $(f \circ g)(4) =$

3. The domain of the function $f(x) = 4 + \sqrt{x+1}$ is

(a)
$$[4,\infty)$$

(b)
$$[-4, \infty)$$

(c)
$$[-1, \infty)$$

(d)
$$[1,\infty)$$

4. If the graph of the function $f(x) = \sin x$ is shifted 2 units upward, then the range of the new function is

(a)
$$[-3,-1]$$

(b)
$$[-1,1]$$

(d)
$$[-2,2]$$

- **5**. The graph of the function $f(x) = -3^{x-5}$ is obtained from the graph of $f(x) = 3^x$ by
 - (a) reflecting about the x –axis and shifting 5 units to the left
 - (**b**) reflecting about the y –axis and shifting 5 units to the right
 - (c) reflecting about the y –axis and shifting 5 units to the left.
 - (d) reflecting about the x –axis and shifting 5 units to the right .
- **6**. The following figure represents the graph of the function f(x) =

- (a) $x^3 3$
- **(b)** $(x+3)^3$
- (c) $(x-3)^3$
- **(d)** $x^3 + 3$

7. The following figure represents the graph of the function f(x) =

- (a) $\frac{-1}{x^2}$ (b) $\frac{1}{x^2}$ (c) $\frac{1}{(x-1)^2}$
- **(d)** $\frac{1}{x^2} 1$

answers: 1-a, 2-a, 3-c, 4-c, 5-d, 6-b, 7-a.